Intro. to ODEs

Quiz 9 Solutions

1) Solve the general solution to the following differential equation.

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=4 e^{-t} \ln (t) \quad(t>0)
$$

The characteristic equation is $r^{2}+2 r+1=(r+1)^{2}=0$ with roots $r=-1,-1$. So, the homogeneous solution is

$$
x_{H}(t)=c_{1} e^{-t}+c_{2} t e^{-t}
$$

To find a particular solution, we implement variation of parameters.

$$
\begin{aligned}
x_{P}(t) & =v_{1}(t) e^{-t}+v_{2}(t) t e^{-t} \\
W\left[x_{1}, x_{2}\right](t) & =\left|\begin{array}{cc}
e^{-t} & t e^{-t} \\
-e^{-t} & e^{-t}-t e^{-t}
\end{array}\right|=e^{-2 t} \\
v_{1}(t) & =-\int \frac{4 t e^{-2 t} \ln (t)}{e^{-2 t}} d t=-4 \int t \ln (t) d t=t^{2}-2 t^{2} \ln (t) \\
v_{2}(t) & =\int \frac{4 e^{-2 t} \ln (t)}{e^{-2 t}} d t=4 \int \ln (t) d t=4 t \ln (t)-4 t \\
x_{P}(t) & =\left(t^{2}-2 t^{2} \ln (t)\right) e^{-t}+(4 t \ln (t)-4 t) t e^{-t} \\
& =-3 t^{2} e^{-t}+2 t^{2} e^{-t} \ln (t)
\end{aligned}
$$

So, the general solution is

$$
x(t)=c_{1} e^{-t}+c_{2} t e^{-t}-3 t^{2} e^{-t}+2 t^{2} e^{-t} \ln (t)
$$

2) Solve the general solution to the following differential equation.

$$
\frac{d^{2} x}{d t^{2}}+x=\tan (t) \sec (t)
$$

The characteristic equation is $r^{2}+1=0$ with roots $r= \pm i$. So, the homogeneous solution is

$$
x_{H}(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

To find a particular solution, we implement variation of parameters.

$$
\begin{aligned}
x_{P}(t) & =v_{1}(t) \cos (t)+v_{2}(t) \sin (t) \\
W\left[x_{1}, x_{2}\right](t) & =\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right|=1 \\
v_{1}(t) & =-\int \frac{\tan (t) \sec (t) \sin (t)}{1} d t=-\int \tan ^{2}(t) d t=-\int\left(\sec ^{2}(t)-1\right) d t=-\tan (t)+t \\
v_{2}(t) & =\int \frac{\tan (t) \sec (t) \cos (t)}{1} d t=\int \tan (t) d t=-\ln |\cos (t)| \\
x_{P}(t) & =(t-\tan (t)) \cos (t)-\ln |\cos (t)| \sin (t) \\
& =t \cos (t)-\sin (t)-\ln |\cos (t)| \sin (t)
\end{aligned}
$$

So, the general solution is

$$
x(t)=c_{1} \cos (t)+c_{2} \sin (t)+t \cos (t)-\ln |\cos (t)| \sin (t)
$$

where we drop the extra $-\sin (t)$ term from the particular solution since it can absorbed into the homogeneous part of the solution.
3) A mass of size $m=1$ is attached to a spring with strength $k=10$. The coefficient of resistance for the system is $b=2$, and an external force $F(t)=10 \cos (4 t)$ is acting on the system. Write down the differential equation that models the position of the mass $x=x(t)$ as measured from equilibrium. Find the steady-state portion of the solution (i.e. the particular solution).
The differential equation for this system is

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+10 x=10 \cos (4 t)
$$

Since this is a damped oscillator and we are only asked for the steady-state solution $x_{P}(t)$, we don't need to find the homogeneous solution in this case (as it definitely won't be anything like the periodic forcing term). We can use Undetermined Coefficients for the particular solution.

$$
\begin{aligned}
x_{P}(t) & =A \cos (4 t)+B \sin (4 t) \\
x_{P}^{\prime}(t) & =4 B \cos (4 t)-4 A \sin (4 t) \\
x_{P}^{\prime \prime}(t) & =-16 A \cos (4 t)-16 B \sin (4 t)
\end{aligned}
$$

Substituting these into the differential equation gives

$$
(-6 A+8 B) \cos (4 t)+(-6 B-8 A) \sin (4 t)=10 \cos (4 t)
$$

So, we need

$$
\begin{aligned}
& -6 A+8 B=10 \\
& -6 B-8 A=0
\end{aligned}
$$

This gives $A=-\frac{3}{5}$ and $B=\frac{4}{5}$, and the steady-state solution is

$$
x_{P}(t)=-\frac{3}{5} \cos (4 t)+\frac{4}{5} \sin (4 t) .
$$

